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Averages and critical exponents in type-III intermittent chaos

Hugo L. D. de S. Cavalcante and J. R. Rios Leite
Departamento de Fı´sica, Universidade Federal de Pernambuco, 50670-901 Recife, PE Brazil

~Received 12 July 2001; published 23 August 2002!

The natural measure in a map with type-III intermittent chaos is used to define critical exponents for the
average of a variable from a dynamical system near bifurcation. Numerical experiments were done with maps
and verify the analytical predictions. Physical experiments to test the usefulness of such exponents to charac-
terize the nonlinearity at bifurcations were done in a driven electronic circuit with diode as a nonlinear element.
Two critical exponents were determined at the same bifurcation: one from the fitting of the average voltage
across the diode and the other one from the average length of the laminar phase events. Both values are
consistent with the predictions of a type-III intermittency of cubic nonlinearity. The averages of variables in
intermittent chaotic systems is a technique complementary to the measurements of laminar phase histograms,
to identify the nonlinear mechanisms. The average exponents may have a broad application in ultrafast chaotic
phenomena.
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I. INTRODUCTION

Intermittent chaos is the phenomenon shown by syst
exhibiting long sequences of periodiclike behavior, the lam
nar phases, separated by comparatively short chaotic e
tions. Intermittent chaotic systems have been extensiv
studied since the original proposals by Pomeau and Man
ille @1–4# classifying type-I, -II, and -III instabilities when
the Floquet multipliers of a map crosses the unity circ
Although other mechanisms may occur leading to interm
tency these three cases are the most simple and the
frequently encountered in low-dimensional systems. T
class of intermittent chaos studied by Pomeau and Mann
ille includes the tangent bifurcation, leading to intermitten
of type I, when the Floquet’s multiplier for the associat
map crosses the circle of complex numbers with unit
norm through11; the Hopf bifurcation, leading to type-I
intermittency, which appears as two complex eigenvalue
the Floquet’s matrix cross the unitary circle off the real ax
and the subcritical period doubling, leading to type-III inte
mittency, whose critical Floquet’s multiplier is21.

Many experimental evidences for these intermittent
haviors have appeared in the literature. The type III has b
reported for electronic nonlinear devices@5–7#, lasers@8#,
and biological tissues@9#. A signature for this intermittency
is given by the critical exponent describing the depende
of average length of nearly periodic phases, that is, lam
phases, with the control parameter. Histograms of numbe
laminar phases longer than a given duration are related to
normal form nonlinearity describing the system@2,10#. Dif-
ferent nonlinear power in the model implies different exp
nents, as described by Kodamaet al. @10#. Kim et al. @4#
studied the exponent for the average length of laminar ph
as function of the reinjection probability. Herein another a
erage is explored to characterize the intermittency and
nonlinearity. It is the average of one variable of the syste
Near bifurcation, approximate expressions for the natu
measure, or probability density, are obtained for a map w
type-III intermittency, in Sec. II. Critical exponents are d
fined from analytical approximations and shown to be use
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in characterizing the bifurcation.
Numerical experiments with the maps are presented

Sec. III, verifying the proposed exponents. To test in a r
physical system, a nonlinear circuit with a diode, similar
the one used in the early demonstrations of chaotic unive
properties@5,11–13#, was set up as described in Sec. IV a
used to verify the exponents. The voltage across the dio
which is a dynamical variable of the system, was simul
neously measured in time series and average. The typ
intermittency bifurcation is well characterized both, usi
the experimental next peak value map and the average.

II. NORMAL FORM MAP WITH TYPE-III
INTERMITTENCY

To establish the new critical exponents for the avera
one begins with the normal form of the map that has type
intermittency@2#

M ~X!52~11e8!X1aX21h8X3. ~1!

The bifurcation, whenX50 ceases to be a stable fixed poin
occurs ate850. The second application of this map, in th
approximation of smalle8 andX is given by

M2~X!5~112e8!X1hX3, ~2!

where h522(h81a2). If this coefficient is positive and
e8.0 one has type-III intermittency aroundX50, provided
a reinjection mechanism is introduced in Eqs.~1! and ~2!.
When a5” 0 the map of Eq.~1! is nonsymmetrical inX.
Generally, any odd exponent in the nonlinear term of Eq.~2!
leads to the intermittency. Thus, a map~second iterate! de-
fined in the interval@0,1# with the type-III intermittency is
@3#

Xn115@~11e!Xn1Xn
z#~mod1!. ~3!

The value ofz>3 describes the nonlinear dependence
the subcritical bifurcation ate50. For e!1 the fixed point
©2002 The American Physical Society10-1
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X50 is unstable, but many iterates of the map, shown in F
1, fall near zero. These are called the laminar phase itera

For smalle the natural measure is obtained, following t
steps of Manneville@14#, as

m~e,z,X,dX!5F E
0

1 dX

e1X(z21)G21
dX

e1X(z21)
. ~4!

Using this measure, the average ofX is

^X~e,z!&5F E
0

1 dX

e1X(z21)G21E
0

1 XdX

e1X(z21)
. ~5!

Its dependence one andz can be analytically established fo
small e.

The simple casez53 reduces to

^X~e,z53!&'2
1

p
e1/2 ln e. ~6!

For z.3 the general asymptotic expression is

^X~e,z!&}en, ~7!

wheren is the new exponent, whose value is

n51/~z21!. ~8!

This is the exponent that can be extracted from numer
and experimental systems to obtain the value ofz. Similar
expressions can be obtained for the second iterated map
negative values ofX. If the original first iterated map, giving
Eq. ~3!, is fully odd in X, the total average must be zer
Once the reinjection or the map is not symmetrical, i.e.,
value of some even nonlinear power~less thanz) is nonzero,
the exponents of the averages can be obtained from the
ond iterate maps as Eq.~3!. A detailed study of these sym
metry properties will be published elsewhere@15#. One must
recall that, in type-III intermittent chaos, an exponent alrea
exists in the literature for the average length of lamin
phases, given by@7,10# b5(z22)/(z21). The simple rela-
tion exists, givingn1b51. Therefore, asz varies through
3,5, . . . , therelative variation of these exponents isDn/n
.Db/b. This means equal or better sensitivity in the det

FIG. 1. Map with the normal form that gives type-III intermi
tency. The valuez53 was used in Eq.~3!.
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mination ofn with respect tob. The most important fact is
that those two exponents should be searched for inde
dently in any experiment.

III. NUMERICAL AVERAGES AND EXPONENTS
IN THE MAP

To test the predictions of Eq.~8! numerically the map of
Eq. ~1! was restricted touXu,1 by a modulo one reinjection
When the iterate givesX.1 or X,21 the integer part is
subtracted. Averages were obtained directly from iterates
the map starting from random initial condition. A transient
23104 iterates was eliminated from a total of 106 calculated
values at each of 103 steps ofe8, between zero and 1023. For
the average to be non-null the value ofa has to be different
from zero. This breaks the symmetry between positive a
negative values of X. Once the average is non-null, its
havior for smalle follows Eq. ~6!. This is shown in Fig. 2.
The a50 case, where the average is always zero, is
represented.

The same slope is obtained for the averages with differ
values ofa and h8. The resulting averages have the sam
dependence one as the one obtained from the map of seco
iterates@Eq. ~3!#, calculated with the same number of ite
ates; all coinciding with the Eq.~6!.

Figure 3 shows numerically calculated averages obtai

FIG. 2. Average ofX from the map in Eq.~1!, with the modulo
one reinjection and calculated with 106 iterates at each of 103 steps
of the control parametere. The log-log plot shows the same slop
for all averages, independent of the value ofa andh8.

FIG. 3. Average ofX from the map in Eq.~3!, calculated with
23107 iterates at each of 103 steps of the control parametere.
White squares are used forz57 and filled circles forz53. The thin
lines correspond to the predicted values given by Eqs.~6! and ~7!.
0-2
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directly from iterates of the map in Eq.~3!, whenz53 and
z57. Again the initial condition at each value ofe was taken
at random. A transient of 105 iterates was eliminated from
total of 23107 calculated values at each of 103 steps ofe,
between zero and 1021.

For e,1022 the z53 and 7 results are very well supe
imposed by the analytical curves made from Eq.~6!, with
n50.50, and Eq.~7!, with n51/6'0.17, respectively. The
two behaviors are clearly distinguished in the log-log pl
For the purpose of comparison with the already establis
exponents one should notice that the exponents for the a
age laminar phase are given in Ref.@10# as (z22)/(z21)
that is b50.50 andb50.83, respectively, verifyingn1b
51.

Up to this point all results have concerned discrete ma
Dynamical fluxes with associated maps having intermitt
chaos show similar critical exponents for the average of
continuous variables. This has been verified numerically w
tangent bifurcation of type-I intermittency@17,18# and will
be demonstrated here for a physical chaotic oscillator.
the type-III intermittency the map extracted from a flux h
the form of Eq. ~3! for its second iterates. A discretel
sampled continuous flux may be viewed as a finite se
discrete stroboscopic maps, all with the same strobosc
frequency but stroboscopic phases ranging from 0 to 2p in
uniformly separated steps. The number of such maps g
the ratio of sampling frequency to stroboscopic frequen
The time average of the continuous flux is the average of
time averages of these maps. If a map from this serie
nonsymmetrical, only in very special cases it would happ
that this asymmetry be exactly canceled by the summa
on the other maps. Thus, in general, its expected that if
flux leads to a nonsymmetrical map~no odd symmetry with
respect to the unstable fixed point! the average of its continu
ous variable will exhibit the same exponentn of Eq. ~8!.

IV. EXPERIMENTAL EXPONENTS IN A NONLINEAR
CIRCUIT WITH INTERMITTENCY

The physical experimental system to test the above ex
nents consisted of anRLC series circuit, where a nonlinea
capacitance was implemented by ap-n junction diode
@12,13#. The circuit, presented in Fig. 4, was driven by
frequency and amplitude controllable oscillator with outp
impedance of 50V. An inductor of 0.1 H, an external resis

FIG. 4. Experimental diagram of theRLD circuit showing type-
III intermittent chaos. The voltage across the diode was the dyna
cal variable measured both in its peak value, to make maps,
integrated to give the averages. The circuit is drawn with th
lines, while thin lines are the high impedance probe and integra
02621
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tor of 13 V and a~typical 1N4007! diode formed the circuit,
whose linear oscillation regime had resonance frequenc
150 kHz.

Dynamical bifurcations were produced by scanning
external drive frequency. Time series of the value of the vo
age across the diode and the current in the circuit were
lected with a 12 bits resolution converter. The sampling r
was 107 sample/s. Thus 200 points were saved on each
cillator cycle. Capturing 104 points at each value of the con
trol frequency, a simple software searched for the maxima
the series. In wide range scans the typical bifurcation d
grams given by the peak value of the voltage across
diode, show clearly the well-known results of period do
bling cascades, chaotic windows, and tangent bifurcati
from chaos into periodic windows@5,12,13,7#.

A specific bifurcation, with intermittency and no bistabi
ity, was found and studied, scanning the external oscilla
frequency from 48 708 Hz to 48 768 Hz by 300 equal sm
steps. The drive voltage amplitude was fixed at 2.7 V. T
circuit was mounted inside an isolating box to prevent th
mal drift effects@16#. The value of a control parametere is
obtained as the frequency detuning step divided by the c
cal frequency of the bifurcation, 48 762 Hz. Thuse varied in
the range of 1024–1023. A segment of the voltage pulses
shown in Fig. 5. The signature of type-III intermittency
observed with the laminar events corresponding to the u
form oscillations alternating their peak value around 1 V.

Multibranch maps constructed from the maxima of t
voltage across the diode, extracted from series with 63105,
could be approximated to one-dimensional ones, expecte
the limit of infinite dissipation. Second return maps a
laminar phase histograms, not shown here, indicate type
intermittency. Figure 6 shows the average length of lami
phases for different values ofe. Each histogram used wa
obtained with 63105 points. The values ofe were calculated
as (f 2 f 0)/ f 0. The critical frequencyf 0 drifted with tem-
perature and within the experiment is affected by an erro
about 1 Hz. Compared to the critical frequency, this leads
an error ine of about 1/50 0005231025 which corresponds
approximately to 2% of the maximum value ofe. To find the
length of the laminar phase intervals a threshold value w
set in the data series like Fig. 5. The main error in the av

i-
nd
k
r. FIG. 5. Voltage pulses measured across the diode in theRLD
circuit. Successive maxima alternate their position respective to
1-V value until a chaotic burst occurs and reinjects back to
vicinity of the unstable orbit, typical of type-III intermittency.
0-3
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age length of these laminar events was due to the fi
length of the series. In our experimental data,N, the number
of laminar phase events, was*400 for all values ofe. As-
suming the expected error in^ l & as^ l &/AN and the error bars
marked in the figure are conservatively of 5%.

A theoretical fitting @10# is best with an exponentb
50.62. Notice that for the map the predictions areb50.5 for
z53 andb50.75 forz55. However the experimental dat
always has excess of laminar events identified with sh
length @9# and this effect gives a bigger experimental val
for b in the fittings. Therefore,z53 is the best odd value
The excess of short laminar phase events may be relate
the finite dissipation rate in the phase space of the exp
mental system and the consequent nonunidimensional m
and also to a nonuniform density of probability for the re
jection, as discussed by Kimet al. @4#.

The peak value of the voltage, which gave the seco
return map and the histograms is shown in Fig. 7~a!. The
laminar phases are the oscillations with repetitive visits
the maximum value near 1 V in the figure. As the segme
represented in Fig. 5~a! are short in time for many values o

FIG. 6. Measured average lengths of laminar oscillations in
driven circuit with a diode. The error bars fore correspond to the
estimated 2% uncertainty on the value of the difference betw
the external frequency and the critical frequency, which is alw
subject to a small drift. The error bars in the values of the aver
of laminar events, taken as 5%, are due to the finite length of
experimental series. The thick line is the theoretical fitting for typ
III intermittency with exponentb50.62.

FIG. 7. ~a! Peak voltage across the diode in the type-III bifu
cation of the circuit.~b! Simultaneously measured average volta
The thick line is a fitting of Eq.~6! with exponentn50.55.
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parameters they show a single laminar event with all po
accumulated around the unstable orbit. Also shown is
simultaneously acquired average of the voltage across
diode. It was obtained with a simple electronic integrat
having a time constant of 3 s. To account for long lamin
phase events and~which is equivalent! decrease the averag
fluctuations the scan lasted 50 min.

The experimental average voltage was fitted to the exp
sion

^X~e!&52en ln e. ~9!

The exponentn50.55 gave an excellent agreement with t
experimental plot, as shown in Fig. 7. Attempts of fittings
higher values ofz, i.e., to Eq.~7!, failed. It is worth noticing
that the value predicted forz55 is n50.25. Thus, the ex-
perimental average consistently verifiesz53 for the nonlin-
earity of this bifurcation in the circuit. The confidence for th
experimental values ofb andn from fittings using standard
x2 procedure is better than 2%. Therefore, the resultb1n
51.1760.02 shows that a discrepancy remains between
experiments and the unidimensional map model. While
bigger value obtained forb has been attributed to an exce
of short laminar phase events@4# no such study of deviations
exists for the exponent in the averages.

V. CONCLUSION

In conclusion, critical exponents for the averages of o
dynamical variable are established analytically for type-
intermittent chaotic maps. Those exponents are directly
lated to the nonlinear power law of the normal form of t
maps. They have a simple relation with the exponents of
average length of laminar iterates in the same systems.
these properties were verified in numerical experiments w
maps.

Physical experiments with a continuous flux were a
done to demonstrate the exponents in averages. The ave
voltage across a diode in a chaotic electronic circuit w
measured while the drive frequency was scanned thro
bifurcations. A bifurcation from chaos into periodic puls
tion, shown to be type-III intermittent, gives an exponent
agreement with the cubic nonlinearity. This result is cons
tently verified in the exponents of the average length of la
nar phases, extracted from histograms of the peak pulse
ages in the circuit.

Averages of dynamical variables have been proposed
get the signature of the Lorenz chaos bifurcation@19#, have
been numerically studied in critical bifurcations@20#, and
experimentally measured in bifurcating pulsed lasers@21#.
However, no systematic study of critical exponents has b
done.

The technique of measuring averages of dynamical v
able in intermittent chaos is a complementary procedure
investigate bifurcations of nonlinear systems. The exp
mental average may also be advantageous when dete
noise for a specific variable has a bandwidth overlapping
frequency bandwidth of the chaotic oscillations. For syste
with high frequency noise it is naturally bound to be mo
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sensitive. Its experimental motivation is therefore enhan
to characterize ultrafast chaotic oscillators, as diode las
using slow time detection techniques. One extension rele
to the work presented here is the study of the exponents
the averages in bifurcations with nonuniform reinjection
the intermittency, as studied by Kimet al. @4#. A relation
between exponents of the averages and the exponents o
average length of laminar phases events should exist ge
alizing then1b51 given here. Another potential use for th
averages near bifurcation would be to complement the c
frontation between experimental data and model as extra
from nonlinear data analysis@22,23#. The models inferred
from the data analysis must have bifurcations consistent w
the experimental system. These bifurcations could be te
ce

v.

s,
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comparing both the exponents of laminar events and the
ponents of averages of dynamical variables. The critical
ponents have been introduced for many types of bifurcati
in chaotic systems@24#. Their presence in simple, exper
mentally accessible, statistical properties, as the averages
their higher moments, are under investigation. The earl
citation of averages in chaos can be traced to the orig
propositions of unpredictability in deterministic chaos@25#.
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