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Averages and critical exponents in type-Ill intermittent chaos
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The natural measure in a map with type-lll intermittent chaos is used to define critical exponents for the
average of a variable from a dynamical system near bifurcation. Numerical experiments were done with maps
and verify the analytical predictions. Physical experiments to test the usefulness of such exponents to charac-
terize the nonlinearity at bifurcations were done in a driven electronic circuit with diode as a nonlinear element.
Two critical exponents were determined at the same bifurcation: one from the fitting of the average voltage
across the diode and the other one from the average length of the laminar phase events. Both values are
consistent with the predictions of a type-IIl intermittency of cubic nonlinearity. The averages of variables in
intermittent chaotic systems is a techniqgue complementary to the measurements of laminar phase histograms,
to identify the nonlinear mechanisms. The average exponents may have a broad application in ultrafast chaotic

phenomena.
DOI: 10.1103/PhysReVvE.66.026210 PACS nunier05.45-a, 84.30.Bv
I. INTRODUCTION in characterizing the bifurcation.

Numerical experiments with the maps are presented in
Intermittent chaos is the phenomenon shown by systemSec. lll, verifying the proposed exponents. To test in a real
exhibiting long sequences of periodiclike behavior, the lami-physical system, a nonlinear circuit with a diode, similar to
nar phases, separated by Comparative|y short chaotic eruﬁ]e one used in the early demonstrations of chaotic universal
tions. Intermittent chaotic systems have been extensivelpropertieg5,11-13, was set up as described in Sec. IV and
studied since the original proposals by Pomeau and Mannewsed to verify the exponents. The voltage across the diode,
ille [1—4] classifying type-I, -1, and -lIl instabilites when Which is a dynamical variable of the system, was simulta-
the Floquet multipliers of a map crosses the unity circle.neously measured in time series and average. The type-ll|
A|though other mechanisms may occur |eading to intermitjntermittency bifurcation is well characterized both, using
tency these three cases are the most simple and the mdBe experimental next peak value map and the average.
frequently encountered in low-dimensional systems. The
class of intermittent chaos studied by Pomeau and Mannev- II. NORMAL FORM MAP WITH TYPE-III
ille includes the tangent bifurcation, leading to intermittency INTERMITTENCY
of type I, when the Floquet’s multiplier for the associated . N
map crosses the circle of complex numbers with unitary 10 es}abhsh the new critical exponents for the averages
norm through+1; the Hopf bifurcation, leading to type-1l ON€ begms with the normal form of the map that has type-ll
intermittency, which appears as two complex eigenvalues dhtermittency{2]
the Floquet's matrix cross the unitary circle off the real axis; , 5 u3
and the subcritical period doubling, leading to type-Ill inter- M(X)=—(1+ €)X+ aX"+ 7' X" @)
mittency, whose critical Floquet’s multiplier is 1. ) ) i )
Many experimental evidences for these intermittent be- N€ bifurcation, wherx=0 ceases to be a stable fixed point,
haviors have appeared in the literature. The type Il has beefccurs ate’=0. The second application of this map, in the
reported for electronic nonlinear devicEs—7), lasers[g], ~ @Pproximation of smale’ andX is given by
and biological tissuef9]. A signature for this intermittency 5 ) 3
is given by the critical exponent describing the dependence M=(X)=(1+2€") X+ 7X°, 2
of average length of nearly periodic phases, that is, laminar ) o N
phases, with the control parameter. Histograms of number gthere 7=—2(z'+a?). If this coefficient is positive and
laminar phases longer than a given duration are related to the >0 one has type-IIl intermittency arount=0, provided
normal form nonlinearity describing the syst¢g10]. Dif- @ reinjection mechanism is introduced in E¢$) and (2).
ferent nonlinear power in the model implies different expo-When a#0 the map of Eq.(1) is nonsymmetrical inX.
nents, as described by Kodaneaal. [10]. Kim etal. [4]  Generally, any odd exponent in the nonlinear term of @j.
studied the exponent for the average length of laminar phasé&ads to the intermittency. Thus, a megecond iteratede-
as function of the reinjection probability. Herein another av-fined in the interval0,1] with the type-Ill intermittency is
erage is explored to characterize the intermittency and it63]
nonlinearity. It is the average of one variable of the system.
Near bifurcation, approximate expressions for the natural Xn1=[(1+€)Xn+X71(modD. ()]
measure, or probability density, are obtained for a map with
type-lll intermittency, in Sec. Il. Critical exponents are de- The value ofz=3 describes the nonlinear dependence of
fined from analytical approximations and shown to be usefuthe subcritical bifurcation a¢=0. For e<1 the fixed point
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FIG. 1. Map with the normal form that gives type-lll intermit-
tency. The valug=3 was used in Eq(3). FIG. 2. Average olX from the map in Eq(1), with the modulo
one reinjection and calculated with ®lilerates at each of $Gsteps
X=0 is unstable, but many iterates of the map, shown in Figof the control parametes. The log-log plot shows the same slope
1, fall near zero. These are called the laminar phase iteratefor all averages, independent of the valueaohnd 7’ .
For smalle the natural measure is obtained, following the
steps of Mannevillg14], as mination of v with respect to8. The most important fact is

that those two exponents should be searched for indepen-

1 dx dently in any experiment.

wl(€,2,X,dX)= XD (4)

1 dX
0e+XZ D
IIl. NUMERICAL AVERAGES AND EXPONENTS
Using this measure, the averageofs IN THE MAP

1 To test the predictions of E¢8) numerically the map of
(X(e,2))= fl dXx fl XdX (5 Ed-(1) was restricted tdX|<1 by a modulo one reinjection:
' 0 e+ Xz 1) 0 e+ Xz 1)’ When the iterate giveX>1 or X<—1 the integer part is

subtracted. Averages were obtained directly from iterates of

Its dependence oaandz can be analytically established for the map starting from random initial condition. A transient of
small e. 2x 10" iterates was eliminated from a total of®l@alculated

The simple case=3 reduces to values at each of £Gsteps ofe’, between zero and 18. For
the average to be non-null the valuewthas to be different

from zero. This breaks the symmetry between positive and

1
(X(€,z=3))~— ;fllzm €. (6)  negative values of X. Once the average is non-null, its be-
havior for smalle follows Eq. (6). This is shown in Fig. 2.

For z>3 the general asymptotic expression is

represented.
(X(e,2))x €, 7) The same slope is obtained for the averages with different
values ofa and »'. The resulting averages have the same
wherew is the new exponent, whose value is dependence oa as the one obtained from the map of second
iterates[Eq. (3)], calculated with the same number of iter-
v=1/(z—1). (8) ates; all coinciding with the E(6).

The «=0 case, where the average is always zero, is not

Figure 3 shows numerically calculated averages obtained

This is the exponent that can be extracted from numerical

and experimental systems to obtain the valuez.oSimilar 107 P
expressions can be obtained for the second iterated map with i ]
negative values oX. If the original first iterated map, giving
Eq. (3), is fully odd in X, the total average must be zero. ~
Once the reinjection or the map is not symmetrical, i.e., the > 107k
value of some even nonlinear powgss thare) is nonzero, ~
the exponents of the averages can be obtained from the sec-
ond iterate maps as E(3). A detailed study of these sym-

metry properties will be published elsewh¢i&]. One must T P S R

recall that, in type-Ill intermittent chaos, an exponent already 10 102 107 107!

exists in the literature for the average length of laminar €

phases, given b}7,10] = (z—2)/(z—1). The simple rela- FIG. 3. Average ofX from the map in Eq(3), calculated with
tion exists, givingv+ g=1. Therefore, ag varies through 2x 10" iterates at each of $0steps of the control parameter
3,5,..., therelative variation of these exponentsAs//v  White squares are used fp= 7 and filled circles foz= 3. The thin

>A B/ B. This means equal or better sensitivity in the deter-ines correspond to the predicted values given by Egjsand (7).
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FIG. 4. Experimental diagram of tHeL D circuit showing type- 0 02 04 06 0.8 1
Il intermittent chaos. The voltage across the diode was the dynami- .
cal variable measured both in its peak value, to make maps, and time (ms)

integrated to give the averages. The circuit is drawn with thick

lines, while thin lines are the high impedance probe and integrator. F!CG- 5. Voltage pulses measured across the diode irRth®
circuit. Successive maxima alternate their position respective to the

1-V value until a chaotic burst occurs and reinjects back to the

directly from iterates of the map in E@), whenz=3 and vicinity of the unstable orbit, typical of type-IIl intermittency.

z=7.Again the initial condition at each value efvas taken
at random. A transient of PQterates was eliminated from a
total of 2x 10’ calculated values at each of*18teps ofe,  tor of 13 and a(typical 1N4007 diode formed the circuit,

between zero and 10. whose linear oscillation regime had resonance frequency at
For e<10 2 thez=3 and 7 results are very well super- 150 kHz.
imposed by the analytical curves made from E8), with Dynamical bifurcations were produced by scanning the

v=0.50, and Eq(7), with v=1/6~0.17, respectively. The external drive frequency. Time series of the value of the volt-
two behaviors are clearly distinguished in the log-log plot.age across the diode and the current in the circuit were col-
For the purpose of comparison with the already establishetécted with a 12 bits resolution converter. The sampling rate
exponents one should notice that the exponents for the avenas 13 sample/s. Thus 200 points were saved on each os-
age laminar phase are given in REf0] as (z—2)/(z—1) cillator cycle. Capturing 1Dpoints at each value of the con-
that is 8=0.50 andB=0.83, respectively, verifyingy+ 3  trol frequency, a simple software searched for the maxima in
=1. the series. In wide range scans the typical bifurcation dia-
Up to this point all results have concerned discrete mapsgrams given by the peak value of the voltage across the
Dynamical fluxes with associated maps having intermittentliode, show clearly the well-known results of period dou-
chaos show similar critical exponents for the average of itdling cascades, chaotic windows, and tangent bifurcations
continuous variables. This has been verified numerically witfrom chaos into periodic window$,12,13,7.
tangent bifurcation of type-I intermittendy17,18 and will A specific bifurcation, with intermittency and no bistabil-
be demonstrated here for a physical chaotic oscillator. Foity, was found and studied, scanning the external oscillator
the type-lll intermittency the map extracted from a flux hasfrequency from 48 708 Hz to 48 768 Hz by 300 equal small
the form of Eq.(3) for its second iterates. A discretely steps. The drive voltage amplitude was fixed at 2.7 V. The
sampled continuous flux may be viewed as a finite set ofircuit was mounted inside an isolating box to prevent ther-
discrete stroboscopic maps, all with the same stroboscopimal drift effects[16]. The value of a control parameteris
frequency but stroboscopic phases ranging from O#oi2  obtained as the frequency detuning step divided by the criti-
uniformly separated steps. The number of such maps givegal frequency of the bifurcation, 48 762 Hz. Thasaried in
the ratio of sampling frequency to stroboscopic frequencythe range of 10°~10%. A segment of the voltage pulses is
The time average of the continuous flux is the average of thehown in Fig. 5. The signature of type-lll intermittency is
time averages of these maps. If a map from this series iebserved with the laminar events corresponding to the uni-
nonsymmetrical, only in very special cases it would happeriorm oscillations alternating their peak value around 1 V.
that this asymmetry be exactly canceled by the summation Multibranch maps constructed from the maxima of the
on the other maps. Thus, in general, its expected that if thgoltage across the diode, extracted from series wiiiL6°,
flux leads to a nonsymmetrical ma&po odd symmetry with could be approximated to one-dimensional ones, expected in
respect to the unstable fixed poitite average of its continu- the limit of infinite dissipation. Second return maps and
ous variable will exhibit the same exponanbf Eq. (8). laminar phase histograms, not shown here, indicate type-ll|
intermittency. Figure 6 shows the average length of laminar
IV. EXPERIMENTAL EXPONENTS IN A NONLINEAR phases for different values @f. Each histogram used was
CIRCUIT WITH INTERMITTENCY obtained with 6< 10° points. The values of were calculated
as (f—fg)/fy. The critical frequencyf,y drifted with tem-
The physical experimental system to test the above expgerature and within the experiment is affected by an error of
nents consisted of aRLC series circuit, where a nonlinear about 1 Hz. Compared to the critical frequency, this leads to
capacitance was implemented by mn junction diode an error ine of about 1/50 0082 X 10~ ° which corresponds
[12,13. The circuit, presented in Fig. 4, was driven by aapproximately to 2% of the maximum value @fTo find the
frequency and amplitude controllable oscillator with outputlength of the laminar phase intervals a threshold value was
impedance of 5d). An inductor of 0.1 H, an external resis- set in the data series like Fig. 5. The main error in the aver-
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i T T parameters they show a single laminar event with all points
20 g accumulated around the unstable orbit. Also shown is the
simultaneously acquired average of the voltage across the
diode. It was obtained with a simple electronic integrator,

<l> 157 | having a time constant of 3 s. To account for long laminar
[ phase events anavhich is equivalentdecrease the average
10f 1 fluctuations the scan lasted 50 min.
: L L The experimental average voltage was fitted to the expres-
0 04 3 0.8 1.2 sion
10" ¢
(X(e))=—¢€"Ine. 9

FIG. 6. Measured average lengths of laminar oscillations in the

driven circuit with a diode. The error bars fercorrespond to the The exponent=0.55 gave an excellent agreement with the

estimated 2% uncertainty on the value of the difference betweeréX erimental plot. as shown in Fid. 7. Attemots of fitinas to
the external frequency and the critical frequency, which is alway P piot, 9. 1. P 9

subject to a small drift. The error bars in the values of the averagi1Igher values of, i.e., to Eq.(7), failed. It is worth noticing

of laminar events, taken as 5%, are due to the finite length of théhat the value predicted far=5 is »=0.25. Thus, the ex-
experimental series. The thick line is the theoretical fitting for type-P€fimental average consistently verifies 3 for the nonlin-
Il intermittency with exponen3=0.62. earity of this bifurcation in the circuit. The confidence for the

experimental values g8 and v from fittings using standard

age length of these laminar events was due to the finita” procedure is better than 2%. Therefore, the reuit
length of the series. In our experimental datathe number =1.17=0.02 shows that a discrepancy remains between the
of laminar phase events, was400 for all values ofe. As-  experiments and the unidimensional map model. While the
suming the expected error {h) as(l)/N and the error bars bigger value obtained fof has been attributed to an excess
marked in the figure are conservatively of 5%. of short laminar phase everi] no such study of deviations
A theoretical fitting [10] is best with an exponeng  €Xists for the exponent in the averages.
=0.62. Notice that for the map the predictions gre 0.5 for
z=3 andB=0.75 forz=5. However the experimental data V. CONCLUSION
always has excess of laminar events identified with short ) -
length[9] and this effect gives a bigger experimental value N conclusion, critical exponents for the averages of one
for B in the fittings. Thereforez=3 is the best odd value. dynamical variable are established analytically for type-Ill
The excess of short laminar phase events may be related tgtermittent chaotic maps. Those exponents are directly re-
the finite dissipation rate in the phase space of the experiated to the nonlinear power law of the normal form of the
mental system and the consequent nonunidimensional mafaaps. They have a simple relation with the exponents of the
and also to a nonuniform density of probability for the rein-2verage length of laminar iterates in the same systems. All
jection, as discussed by Kiwt al. [4]. these properties were verified in numerical experiments with
The peak value of the voltage, which gave the secondna@ps. _ . .
return map and the histograms is shown in Fi¢g).7The Physical experiments with a continuous flux were also
laminar phases are the oscillations with repetitive visits todone to demonstrate the exponents in averages. The average

the maximum value near 1 V in the figure. As the segment¥oltage across a diode in a chaotic electronic circuit was
represented in Fig.(8) are short in time for many values of measured while the drive frequency was scanned through
bifurcations. A bifurcation from chaos into periodic pulsa-

tion, shown to be type-lll intermittent, gives an exponent in

% — agreement with the cubic nonlinearity. This result is consis-
> 15K tently verified in the exponents of the average length of lami-
= 14 nar phases, extracted from histograms of the peak pulse volt-
> 05 ages in the circuit.

% , Averages of dynamical variables have been proposed to
Aod get the signature of the Lorenz chaos bifurcafidg], have
—~o3 been numerically studied in critical bifurcatiof20], and
z" experimentally measured in bifurcating pulsed lag&®.

>O 0.2 However, no systematic study of critical exponents has been
— done.

:/>\0'1 ] The technique of measuring averages of dynamical vari-
>~ 020303050 60 able in intermittent chaos is a complementary procedure to

investigate bifurcations of nonlinear systems. The experi-
mental average may also be advantageous when detection
FIG. 7. (8 Peak voltage across the diode in the type-IIl bifur- Noise for a specific variable has a bandwidth overlapping the
cation of the circuit(b) Simultaneously measured average voltage.frequency bandwidth of the chaotic oscillations. For systems
The thick line is a fitting of Eq(6) with exponenty=0.55. with high frequency noise it is naturally bound to be more

tuning frequency (Hz)
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sensitive. Its experimental motivation is therefore enhancedomparing both the exponents of laminar events and the ex-
to characterize ultrafast chaotic oscillators, as diode laserponents of averages of dynamical variables. The critical ex-
using slow time detection techniques. One extension relevamonents have been introduced for many types of bifurcations
to the work presented here is the study of the exponents fan chaotic system$24]. Their presence in simple, experi-
the averages in bifurcations with nonuniform reinjection inmentally accessible, statistical properties, as the averages and
the intermittency, as studied by Kimat al. [4]. A relation  their higher moments, are under investigation. The earliest
between exponents of the averages and the exponents of thigation of averages in chaos can be traced to the original
average length of laminar phases events should exist gengsropositions of unpredictability in deterministic chd@s].

alizing thev+ B8=1 given here. Another potential use for the

averages near bifurcation would be to complement the con- ACKNOWLEDGMENTS
frontation between experimental data and model as extracted
from nonlinear data analysi®2,23. The models inferred Work partially supported by Brazilian Agencies: Conselho

from the data analysis must have bifurcations consistent witfNacional de Pesquisa e Desenvolvime{@dPg and Finan-
the experimental system. These bifurcations could be testetladora de Estudos e ProjetGaNEP).
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